
Synchronization performance of complex oscillator networks

Gang Yan,1,2 Guanrong Chen,2,* Jinhu Lü,3,† and Zhong-Qian Fu1,‡

1Department of Electronic Science and Technology, University of Science and Technology of China,
Hefei, Anhui 230026, People’s Republic of China

2Department of Electronic Engineering, City University of Hong Kong, Hong Kong SAR, People’s Republic of China
3Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China

�Received 19 December 2008; revised manuscript received 18 September 2009; published 30 November 2009�

Recently, synchronization of complex networks has attracted increasing attention from various research
fields. However, most previous works focused on the stability of synchronization manifold. In this paper, we
analyze the time-delay tolerance and converging speed of synchronization. Our theoretical analysis and exten-
sive simulations show that the critical value of time delay for network synchronization is inversely proportional
to the largest Laplacian eigenvalue, the converging speed without time delay is proportional to the second least
Laplacian eigenvalue, and the time delay could increase the converging speed linearly for heterogeneous
networks and significantly for homogeneous networks.
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Synchronization of interconnected systems has attracted
considerable research interests among physics, biology, and
engineering communities in recent years �1–4�. Many inter-
connected systems can be represented as complex networks
�5–7�, in which the nodes are oscillators �dynamical systems�
and the edges are the coupling among them. Most previous
works focused on the stability of the synchronized state �so-
called synchronizability� of various complex oscillator net-
works, i.e., to demonstrate the conditions under which the
oscillator networks can become synchronized and, further-
more, to devise some efficient and effective methods to im-
prove the synchronizability. The first milestone in this direc-
tion is the work of Pecora and Carroll �8�, which unravelled
a key synchronized condition by using the master stability
function �MSF� described as follows. Model the dynamics of
N coupled identical oscillators by ẋi=F�xi�−c� j=1

N lijH�x j�,
where xi is the m-dimensional state of node i, i=1,2 , . . . ,N,
F describes the individual node evolution of the states with-
out coupling, c is the constant coupling strength, H: Rm

→Rm is the coupling function, and L= �lij�N�N is the Laplac-
ian matrix representing the network structure defined by lii
=ki �the degree of node i�, lij =−1 if node i and j are con-
nected but lij =0 otherwise. One can linearize the coupled
dynamical systems around the synchronized state x1=x2
= . . . =xN=xs, typically, ẋs=F�xs�, and then diagonalize L to
find its N eigenvalues 0=�1��2� . . . ��N=�max. This

yields the block variational equations �̇h= �DF−c�hDH��h,
where �h is the hth eigenvalue of L, h=1,2 , . . . ,N, and DF
and DH are the Jacobian matrices of F and H, respectively,
which are the same for each block. Therefore, if one wants to
study the synchronization properties with respect to different
undirected networks, one could just compute the maximum
Lyapunov exponents �max

h of the above equations as func-
tions of c�h. If the values of �max

h are all negative, the syn-
chronized state xs is stable. Moreover, in �8�, it is observed

that the maximum Lyapunov exponents �max
h are in general

negative only within an interval ��a ,�b�, that is, �a�c�2

� . . . �c�max��b. When �b�	, the synchronization of the

network is stable if
�max

�2
�

�b

�a
. Thus, one can reduce the value

of the eigenratio
�max

�2
to improve the synchronizability of the

network. It is noteworthy that in some cases, such as H�x�
=x and �b=	, the synchronized state is stable when the cou-

pling strength c

�a

�2
�9,10�.

On one hand, many papers have followed the MSF
method and studied the synchronizability of unweighted
�11–18� or weighted �19–21� networks. Several approaches
have been proposed to improve the synchronizability, such as
static weighted coupling based on edge betweenness �22�,
topology modification �23,24�, optimization �25–27�, adap-
tive evolution �28�, and so on. On the other hand, there are
few works studying the synchronizing processes. Among
others �29�, studied the Kuramoto model on hierachical net-
works and revealed a gradient synchronization process. The
results of �30� showed the evolution pattern of synchroniza-
tion. And we found �31� that even the same value of the
eigenratio

�max

�2
could induce different performances of the

synchronizing process. Therefore, it is important to further
investigate the performances, e.g., converging speed and
time-delay tolerance of synchronizing processes.

In this paper, we study analytically and numerically the
time-delay tolerance and the converging speed of the syn-
chronizing processes of complex oscillator networks. Our re-
sults show, under some mild approximations, that �i� the
critical time-delay tolerance �c is inversely proportional to
c�max, �ii� the converging speed without time delay is pro-
portional to c�2, and �iii� the converging speed with time-
delay � ���c� increases with c�2 and also increases with �.
Moreover, the time-delay � could increase the converging
speed linearly for heterogeneous networks but could increase
it significantly for homogeneous networks.

We choose the coupling function H�x�=x to perform the-
oretical analysis as follows. Adding time delay into the net-
work gives
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ẋi�t� = F�xi�t�� − c� j=1

N
lijx j�t − �� , �1�

where � is the time-delay constant. It is noteworthy that the
time-delay format we adopted here is employed in many
real-world applications �32,33�. For unweighted and undi-
rected networks, let the synchronization errors be �
= ��i ,�2 , . . . ,�N�= �x1−xs ,x2−xs , . . . ,xN−xs�. Then, one can
linearize Eq. �1� as

�̇�t� = DF��t� − c��t − ��L . �2�

Denote by eh the eigenvectors associated with the eigenval-
ues �h of L and then multiply it to both sides of Eq. �2�, one

obtains �̇�t�eh=DF��t�eh−c�h��t−��eh ,h=1,2 , . . . ,N. To
deal with the time-delay factor, apply the first-order approxi-

mation ��t−��=��t�−��̇�t� for small �, one obtains

�̇h�t� =
1

1 − c��h
�DF − c�h��h�t� , �3�

where �h�t�=��t�eh. Ref. �8� has shown that the dynamical
process without time-delay ��=0� is linearly stable, i.e., the
maximum Lyaponov exponents are all negative if c�h
� ��a ,�b� for all h �h�1�. Thus, the dynamical process with
time delay, as described by Eq. �3�, is linearly stable if 1
−c��h
0 for all h �h�1�, which induces the critical time-
delay tolerance

�c = min
h�1

1

c�h
=

1

c�max
. �4�

In order to provide a clear figure about the converging
speed approaching the synchronized state, consider the pa-
rameters Wh�t�= ��h�2=�h

T�h associated with �h. From Eq.
�3�, one can easily get that

Ẇh�t�
Wh�t�

=
1

1 − c��h

�h
T�DF + �DF�T��h

�h
T�h

−
2c�h

1 − c��h
. �5�

Because the focus here is on the asymptotical converging
speed of ensemble oscillators caused by the coupling and DF
is an essential dynamical property of the individual un-
coupled oscillators, under the assumption �DF��	, we con-
sider DF+ �DF�T as fluctuation of �h

T�h. To justify its valid-
ity, we compute the fluctuation factors


h�t� =
�h

T�DF + �DF�T��h

�h
T�h

, �6�

in the right side of Eq. �5� directly. Figures 1�a� and 1�b�
display the typical evolution of the values of 
2�t� and 
N�t�
corresponding to the second least �nonzero� eigenvalue �2
and the largest eigenvalue �N, for the Rössler oscillator �34�.
One can see that the values are fluctuated around zero. We
have also computed the fluctuation factors for Lorenz chaotic
oscillator �35� and obtained similar results �not shown�.
Thus, one can rewrite Eq. �5� as

Ẇh�t� =

h�t� − 2c�h

1 − c��h
Wh�t� , �7�

where the function 
h�t� denotes the fluctuation of �h
T�h

caused by DF+ �DF�T. The solution is approximately Wh�t�
=Wh�0�e
h�t�−2c�h/1−c��ht. In other words, by ignoring the fluc-
tuation, the converging speed approaching exponentially the
synchronized state along the eigenvector eh is �h���
=−

d ln Wh�t�
dt =

2c�h

1−c��h
. Therefore, as the converging speed is re-

strained by the slowest mode, the converging speed of the
synchronizing process without time delay is

��0� = min
h�1

2c�h = 2c�2, �8�

while the converging speed of the synchronizing process
with time-delay � ���c� is

���� = min
h�1

2c�h

1 − c��h
=

2c�2

1 − c��2
=

��0�
1 − c��2

. �9�

For heterogeneous networks, �2��max. Thus, ���c= 1
c�max

�
1

c�2
, that is, c��2�1. From Eq. �9�, one has ����

��1+c��2���0�. It shows that the time-delay � ����c�
could increase the converging speed linearly for heteroge-
neous networks. While for homogeneous networks, �max
could be a little larger than �2. Particularly, for some regular
homogeneous networks �e.g., complete networks�, �max
equals �2. Thus, 1−c��2 could be very small while ���c.
From Eq. �9�, one can find that the time delay could increase
the converging speed significantly for homogeneous net-
works.

In order to test our main results of critical time-delay
tolerance and the converging speed without or with time de-

,

FIG. 1. �Color online� The values of the fluctuation factors 
2�t�
and 
N�t� are displayed in �a� and �b� for Rössler oscillator on the
network with that the size N=1500, the average degree �k	=40, �
=1.0, the time-delay �=0.05 �see the latter text for details�. �c�
W�t�=�i
xi�t�− �xi	
2 as a function of the evolution time t for differ-
ent networks with the same size N=1500. From right to left, the
curves present �i� �k	=20, �=0.0, �=0, �II� �k	=30, �=0.5, �=0,
�III� �k	=40, �=1.0, �=0, and �IV� �k	=40, �=1.0, �=0.05, respec-
tively. The coupling strength c=0.08.
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lay, represented by Eqs. �4�, �8�, and �9�, respectively, we
have performed extensive numerical experiments. As we
need to generate various networks with different values of �2
and �N, we adopt the evolution network model in Refs.
�36,37�. In the initial network, there are m0 connected nodes.
Then, add one node into the network at each time step and
connect it to m �m�m0� existing nodes. The node links to
the existing node i with probability ��ki�=ki

� /� jkj
�, where ki

is the degree of node i and � is a constant describing nonlin-
ear preferential attachment. After a sufficiently long time
evolution �or for a large enough size, since N=m0+ t�, the
average degree of the whole network is �k	�2 m and the
node degrees distribution could be in a power-law form if
�=1, or else otherwise. Some previous studies have indi-
cated that the average degree �k	 and node-degree heteroge-
neity are related to the values of �2 and �N �38�. To repro-
duce that, we generated various networks needed by using
this model by tuning the values of m and �.

As an example, consider a network of coupled Rössler
oscillators, i.e., xi= �xi1 ,xi2 ,xi3�T and F�xi�= �−xi2−xi3 ;xi1
+0.2xi2 ;0.2+ �xi1−7.0�xi3�. According to the theoretical
analysis above, we computed an order parameter used to
measure the synchronization error: W�t�=�i
xi− �xi	
2 where
� . . . 	 denotes averaging over all nodes. It is obvious that for
large t, W�t�→0, if the network can be synchronized. And
the converging speed ����=− d ln W�t�

dt , which indicates that we
can obtain converging speed by computing the absolute
value of the slope of the evolution curve of W�t� in semilog
plot as in Fig. 1�c�. In the numerical simulations, we used the
Euler method with time step �t=0.01. Figure 1�c� displays

the typical evolution curves of W�t� for four different net-
works: from right to left, �I� �k	=20, �=0.0, �=0, �II� �k	
=30, �=0.5, �=0, �III��k	=40, �=1.0, �=0, and �IV��k	
=40, �=1.0, �=0.05. Comparing �I� and �III�, one can easily
find that larger average degree induces faster convergence
while comparing �III� and �IV� one finds that proper time
delay could increase the converging speed as implied by Eq.
�9�. Figures 1�a� and 1�b� display the function 
h�t� in Eq. �6�
for h=2 and h=N, respectively, on the network with N
=1500, �k	=40, and �=1.0, the time-delay �=0.05. One can
see that the values are indeed fluctuated around zero, which
indicates that the assumption in our theoretical analysis is
valid.

Next, we show extensive simulations to verify the accu-
racy of our main results. By adding some time-delay � into
the networks, we obtained the results for three heterogeneous
networks as shown in Fig. 2. One can find that the converg-
ing speed increases almost linearly with the value of
� ���c�, which is in accordance with our analytical result. It
is noticeable that when the time delay is less than �c the
converging speed increases with the value of the time delay
according to Eq. �9�, however, in simulations when the time
delay is a little larger than �c the system may not diverge but
instead its converging speed decreases quickly �within a
small interval�. And after that, the system will diverge, i.e.,
the oscillator network will not become synchronized. We
point out the beginning of the diverging region by dashed
lines in Fig. 2. Therefore, we can get the value of the critical
time-delay tolerance �c at the turning point in simulations �as
pointed by arrows in the figure�. Furthermore, we tuned the
values of � and m in the network generating model and thus
get various networks with different values of �2 and �N.
Then, we performed the numerical simulations on these net-
works to get the relation between critical time-delay toler-

FIG. 2. �Color online� Converging speed ���� as a function of
the value of time-delay � for different networks: �a� �k	=40, �
=0.0; �b� �k	=20, �=1.0; �c� �k	=20, �=0.0. The second least ei-
genvalues and the largest eigenvalues of the three networks are �a�
�2=16.4, �max=124.0, �b� �2=7.3, �max=192.4, and �c� �2=6.8,
�max=81.3, respectively. The network size N=1500 and the cou-
pling strength c=0.08. The curves of ��� represent simulation re-
sults while the curves of ��� represent the analytical results given
by Eq. �7�. The arrows point to the critical time-delay tolerance �c

and the dashed lines point out the beginning of diverging region
�see the text for details�. The simulation results are obtained by
averaging over 10 different generations of the network model.

FIG. 3. �Color online� �a� The critical time-delay tolerance �c vs
the largest eigenvalue �max. �b� Converging speed ��0� without
time-delay vs the second least eigenvalue �2. The curves of ���
represent simulation results while the curves of ��� represent ana-
lytical results. We fixed the network size N=1500 and generated
different networks with various �2 and �max by tuning the values of
� and m in the network model �see the text for details�. The cou-
pling strength c=0.08. The simulation results are obtained by aver-
aging over 10 different generations of the network model.
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ance �c and the largest eigenvalue �max, between converging
speed ��0� without time delay and the second least eigen-
value �2. The results are exhibited in Fig. 3. One can find
that in Fig. 3�a� the critical time-delay tolerance decays as
the maximal eigenvalues increase, which is in accordance
with our theoretical result described by Eq. �3�. And Fig. 3�b�
show that ��0� is proportional to �2, which is also in accor-
dance with our analytical result described by Eq. �8�. Note
that Refs. �39,40� studied synchronization of pulse-coupled
biological oscillators on random networks and Kuramoto os-
cillators on hierachical networks, respectively. And their re-
sults showed that the synchronizing time is inversely propor-
tional to �2, which supports our analytical result about
converging speed without time-delay ��0� as described by
Eq. �8�. At last, we choose two small-size networks
�N=10� to show the different effect of time delay for homo-
geneous and heterogeneous networks. For the complete net-
work ��2=�N=10�, Fig. 4�a� shows that ���� increase
quickly as �. While for the Cage network �25� ��2=2 and
�N=5�, Fig. 4�b� shows that the value of ���� increase lin-
early. It is worth noting that according to Eq. �9�, the con-
verging speed will approaching infinite when the time delay
is close to the critical time-delay �c for the complete net-
works, while the simulation result in Fig. 4�c� shows that the
converging speed will decrease before the critical time-delay
�c. However, by comparing Fig. 4�c� to Fig. 4�d� one can find
that the converging speed for the complete network increases
much more quickly than that for the Cage network. The com-
parative result is in accordance with that in Eq. �9�.

The theoretical and numerical results above are all ob-
tained for the coupling function H�x�=x. In that case, the
synchronizable region is unbounded, i.e., �b=	. It is noted
that some basic analytic results for general time-delayed net-
work synchronization were developed in �41�, but the ap-

proach taken in this paper is more transparent to the under-
lying ideas and is consistent with Ref. �41�.

Next, we perform numerical simulations for another cou-
pling function, with �b�	. It is noteworthy that in Ref. �28�
the authors pointed that the unweighted heterogeneous net-
works cannot be synchronized for H�x�= �x1 ,0 ,0� if the net-
work size N�1000. As we need to study the synchronizing
process on various networks of large sizes, we choose the
coupling function H�x�= �x1 ,x2 ,0� for which the value of �b
is also finite. The results are shown in Fig. 5. One can see
that for different networks the converging speeds are differ-
ent, and proper time delays can increase converging speeds
as shown in Figs. 5�b�–5�d�. General results are almost the
same as that for the coupling function H�x�=x although the
values have some small differences.

In conclusion, we have studied both theoretically and nu-
merically the performances of synchronizing process of
some complex oscillator networks, which revealed the rela-
tion between the performance and the network topology. We
found that the critical time-delay tolerance is inversely pro-
portional to the largest Laplacian eigenvalue of the network
and the converging speed without time delay is in propor-
tional to the second least eigenvalue. Furthermore, we found
that the time delay could increase the converging speed lin-
early for heterogeneous networks and significantly for homo-
geneous networks. Since time-delay tolerance and converg-
ing speed are important in real-world problems, our results
should be useful for structure design and technological ap-
plication issues of network synchronization.
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FIG. 4. �Color online� �c� and �d� display the simulation results
of the converging speed ���� as a function of � for the complete
network �a� and the Cage network �b�, respectively. The network
size N=10 and the coupling strength c=1.0.

,

FIG. 5. �Color online� The results for the coupling function
H�x�= �x1 ,x2 ,0�. �a� displays W�t� as a function of the evolution
time t for different networks with the same size N=1500. The other
parameters are the same as that in Fig. 1. And �b�, �c�, and �d�
display ���� as a function of the value of � for three networks with
the same parameters as in Fig. 2. The coupling strength c=0.1. The
curves in �b�, �c�, and �d� present the averaging results over 10
different generations of the network model and the dashed lines
point out the beginning of diverging region.
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